Lifting of Cusp forms from S̃L2 to GSpin(1, 4)

نویسنده

  • Ameya Pitale
چکیده

We construct liftings of cuspidal automorphic forms from the metaplectic group S̃L2 to GSpin(1, 4) using the Maaß Converse Theorem. In order to prove the non-vanishing of the lift we derive Waldspurger’s formula for Fourier coefficients of half integer weight Maaß forms. We analyze the automorphic representation of the adelic spin group obtained from the lift and show that it is CAP to the Saito-Kurokawa lift from S̃L2 to GSp4(A).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P -adic Family of Half-integral Weight Modular Forms via Overconvergent Shintani Lifting

The classical Shintani map (see [Shn]) is the Hecke-equivariant map from the space of cusp forms of integral weight to the space of cusp forms of half-integral weight. In this paper, we will construct a Hecke-equivariant overconvergent Shintani lifting which interpolates the classical Shintani lifting p-adically, following the idea of G. Stevens in [St1]. In consequence, we get a formal q-expan...

متن کامل

Theta Correspondence of Automorphic Characters

This paper describes the lifting of automorphic characters of O(3)(A) to S̃L2(A). It does so by matching the image of this lift with the lift of automorphic characters from O(1)(A) to S̃L2(A). Our matching actually gives a matching of individual automorphic forms, and not just of representation spaces. Let V be a 3− dimensional quadratic vector space and U a certain 1− dimensional quadratic space...

متن کامل

Lifting Elliptic Cusp Forms to Maass Forms with an Application to Partitions

Abstract. For 2 < k ∈ 1 2 Z, we define lifts of cuspidal Poincaré series in Sk(Γ0(N)) to weight 2 − k harmonic weak Maass forms. This construction answers a question of Dyson by providing the general framework “explaining” Ramanujan’s mock theta functions. As an application, we show that the number of partitions of a positive integer n is the “trace” of singular moduli of a Maass form arising f...

متن کامل

Jacobi Forms of Degree One

We show that a certain subspace of space of elliptic cusp forms is isomorphic as a Hecke module to a certain subspace of space of Jacobi cusp forms of degree one with matrix index by constructing an explicit lifting. This is a partial generalization of the work of Skoruppa and Zagier. This lifting is also related with the Ikeda lifting.

متن کامل

An Explicit Construction of Jacobi Cusp Forms and Its Applications

From an elliptic cusp form, we construct a Jacobi cusp form of degree one with matrix index, which gives a section of the descent map. We have applications to the theory of Maass spaces on orthogonal groups and the Ikeda lifting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006